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We consider a parastatistics ideal gas with energy spectrum ~ o~ [kl ~ (c~ > 0) or 
even more generally in a d-dimensional box with volume V (periodic boundary 
conditions), the number N of the gas particles being well determined (real par- 
ticles) or not (quasiparticles). We calculate the main thermodynamic quantities 
(chemical potential, internal energy, specific heat C, equation of state, latent 
heat, average numbers of particles) for arbitrary d, e, T (temperature), and p 
(maximal number of particles per state allowed in the parastatistics). The main 
asymptotic regimes are worked out explicitly. In particular, the Bose-Einstein 
condensation for fixed density N/V appears as a nonuniform convergence in the 
p--, oe limit, in complete analogy with the standard critical phenomena that 
appear in interacting systems in the N--, ~ limit. The system behaves essentially 
like a Fermi-Dirac one for all finite values of p, and reveals a Bose-Einstein 
behavior only in the p --, oe limit. For instance, at low temperatures C oc T if 
p < co and C oc T Jl~ if p ~ ~ .  Finally, the Sommerfeld integral and its expan- 
sion are generalized to an arbitrary, finite p. 

KEY WORDS: Parastatistics; ideal gas; Bose Einstein condensation; 
Sommerfeld integral. 

1. I N T R O D U C T I O N  

Since  the  p i o n e e r i n g  w o r k  by Gen t i l e ,  (~) m a n y  dif ferent  s tudies  h a v e  been  

d o n e  which  i n t e r p o l a t e  b e t w e e n  B o s e - E i n s t e i n  a n d  F e r m i - D i r a c  s tat is t ics  

(see, for  ins tance ,  Ref. 2). Pos s ib l e  a p p l i c a t i o n s  h a v e  been  s o u g h t  in field 

t h e o r y  a n d  e l e m e n t a r y  pa r t i c l e  phys ics  (3 6) as wel l  as in c o n d e n s e d  m a t t e r  

phys ics  ( m o l e c u l a r  exc i t ons  a n d  m a g n o n s ,  (7/ q u a n t u m  H a l l  effect(a)). T h e  

ideal  gas  in pa ras t a t i s t i c s  n a t u r a l l y  cons t i t u t e s  a p r iv i l eged  reference  

sys tem,  wh ich  can  be  used  as u n p e r t u r b e d  s t a r t i ng  p o i n t  to s tudy  m o r e  
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complex systems. Also it will be shown that many exact (or asymptotically 
exact) analytical expressions can be obtained, which could serve as testing 
material for various approximation methods. The purpose of the present 
paper is the establishment of the main thermodynamic properties of such a 
gas at fixed volume in d dimensions (d>  0), and for a quite general energy 
spectrum ~ = (ZJ_I ajk2) ~/2 (aj > 0 and ~ > 0; ~ = 1 corresponds to photons 
and to short-wave-vector acoustic phonons, among others; ~ = 2  
corresponds to nonrelativistic free particles and to short wave-vector 
acoustic magnons in Heisenberg ferromagnets, among others). 

In Section 2 we introduce the specific ideal gas model and obtain the 
associated density of states; in Sections 3 and 4 we calculate the main ther- 
modynamic quantities respectively corresponding to fixed (real particles) 
and unfixed (quasiparticles) total number of gas particles; finally, we 
conclude in Section 5. In the Appendix we generalize to parastatistics the 
Sommerfeld integral and its standard expansion. 

2. P A R A S T A T I S T I C S  I D E A L  GAS.  D E N S I T Y  OF S T A T E S  

We consider an ideal gas of N particles (or quasiparticles) in a 
d-dimensional box. Each particle behaves as a planar wave with energy 
spectrum given by 

e = aJ (1) 
j I 

where aj > 0 Vj, e > 0, and kj is the j th component of the wave vector k. 
The particular case aj = a gj yields e oc k ~ (k - I k[). Periodic boundary con- 
ditions are considered on the box, which is assumed to be an orthogonal 
hyperparallelepiped with side lengths {Lj} and volume V-I - I J= l  Lj. The 
possible wave vectors are given by 

kj=(2~/Lj)n, ,  nj=O, +1, _+2,..., Vj (2) 

which inserted into Eq. (1) yields 

~ (2=)2as 2 
j=l  ~ n j=l  (3) 

This is the equation of a hyperellipsoid whose volume provides the number 
of states ~b(e) with energy is equal to or lower than e. Consequently, 

~(~ ) = (~Icl) (~l~o) ~/~ (4) 



D-Dimensional Gas in Parastatistics 99 

with 

~ 2drca/ZF(d/2 + 1)(YIJ= i aj)'/2] ~'/a 
~o-~_  - V d ~  - (4') 

The density of states p(e) is therefore given by 

- e0 \ e 0 /  (5) 

Notice that we treat ~b(e) as if it were a "soft" function of e: this is correct in 
the thermodynamic limit in which we are interested (N--+ oo, V--+ 0% 
N/V~const,  eo--+0). The parastatistics thermal equilibrium average 
number f(e) of particles per state is given by (') 

1 p + l  
f(e) = e/~(~_~)_ 1 e(p+ 1)fl(e--#)__ 1 (6) 

or alternatively by 

f ( e ) =  ~ je(P J)N~-I~)/ ~ ej~(,-u) (6') 
j = l  t j = O  

where fl =- 1/kB T is the inverse temperature, It is the chemical potential, and 
p is the maximal number of particles allowed per state (p = 1 reproduces 
the Fermi Dirac statistics and p-+  oo the Bose-Einstein statistics; see 
Fig. 1. 

3. FIXED TOTAL N U M B E R  OF PARTICLES (REAL PARTICLES)  

3.1. Chemical  Potent ial  and Ground State Populat ion 

We consider here the total number N of gas particles as well deter- 
mined. If we call respectively N o and N e the populations of the ground 
state and the excited states, then 

N= No( T) + Ne( T) (7) 

We now calculate the chemical potential It(T, p), which is complete 
determined by 

N= de p(e) f(g) (8) 
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Fig. 1. Parastatistics with maximal occupation p: average population per state as a function 
of the energy ~ measured from the chemical potential #, for finite and vanishing temperatures. 
The point ( s -  #, f ) =  (0, p/2) is a center of symmetry. 

Let us first consider the T--*0 limit, in which case f (e)  is the step 
function indicated in Fig. 1. We then have 

fo'O (.o pe '+/~ 1 
N =  de p(e) p=jo  -~o/; de 

eoa/~ d .O  (9) 

where # o ( p ) = # ( 0 ,  p)  and we have used Eq. (5) [with p ( e ) = 0  for e < 0 ] .  
Consequent ly  we have that  

where 

or  even 

#o(p) = #o(1 )/p~/" (~o) 

#o(1 ) = ( Nd/a )~/J eo ( 11 ) 

F j a/2 / d  ~1/'2 go(1)=L2 F  +I)QOIa/)fl ~/d (12) 

where we used Eq. (4') to make explicit the dependence of #o on the 
concentra t ion N/V. It is convenient  to introduce the following reduced 
quantities: 

t -kBT/#o(1)  (13) 

fi =/~/#o(1 ) (14) 

x - ~ / ~ o ( 1 )  ( 1 5 )  
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Equation (8) can therefore be rewritten as follows: 

~ -  dx  x d/~ 1 ( 1 6 )  
e x p [ ( x - f i ) / t ] -  1 e x p [ ( p +  1)(x-(t)/ t] - 1 

which makes it obvious that, in energy units of #o(1), the chemical poten- 
tial (and in fact all the thermodynamic quantities in which we shall be 
interested) depends on d and ~ only through the ratio d/~ (see also Ref. 9). 
Through a further transformation y -  x/t we obtain 

~ dy ya/~-I e x p ( y - f t / t ) -  i exp[(p+ l ) ( y - f t / t ) ] -  1 
(17) 

which provides t as an explicit function of tilt, p, and d/~. The results are 
indicated in Fig. 2. As can be observed there, the thermal dependence of/~, 

~5 
(al 

p~2 

p=5 

Fig. 2. Thermal dependence of the (reduced) chemical potential for typical values of p and 
die. Notice that for all p < ov the behavior is qualitatively the same (in the sense that fi is 
analytic for all finite values of t) regardless of the value of d/ct, and can be characterized by 
Fermi-Dirac (p  = 1) behavior, whereas the p ~ oe limit (Bose-Einstein) presents two different 
regimes, one occurring for d/c~< 1 (no Bose-Einstein condensation), the other for d/ot> 1 
(Bose-Einstein condensation, due to nonanalyticity of/.i appearing at a finite temperature). 
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for fixed d/a, flattens in the low-temperature region for increasing p, and 
eventually exhibits, in the p ~ m limit and die > 1, a "plateau" at /2 = 0 
(the width of the plateau increases with increasing and not too high 
d / a -  1 ). This is of course the Bose-Einstein condensation (see Ref. 10 and 
references therein), and we note in the present framework that it appears in 
the p ~ oo limit through a nonuniform convergence completly similar to 
those observed, in the N--* oo limit, for interacting systems presenting 
phase transitions. 

No Bose-Einstein condensation at finite temperatures exists for 
d/a ~< 1. In particular for d/a = 1, this is easy to verify, since the integral of 
Eq. (17) is straightforwardly solved, and we obtain the following depen- 
dence of t on g/t: 

t = { l n l - e x p [ ( p + l ) f i / t ]  - l = [  p ] 1 
~Z-~xp~Tt- ~ } In 2 exp(ffz/t) (18) 

L j = 0  

This expression leads, in the p ~ oo limit (and taking into account that 
/2 < 0 for t > 0), to the standard d =  ~ = 2 result, namely 

f i = t l n ( 1 - e  -lIt ) (19) 

where we verify that fi vanishes at no other place than at t = 0. 
Let us now go back to the general expression indicated in Eq. (17), 

and denote by t* the (finite) temperature at which fi vanishes for fixed p 
and d/a. It follows that 

~t (t*) d/~ = dy ya/~-t _ P (20) 
e y 1 e(p+l)y_l  

The integral can be expressed (see p. 325 of Ref. 11) in terms of the 
Riemann zeta and gamma functions ~ and F, and we obtain 

t * =  1 (p+ l )d /~_  ~ ~ F +1  ->a 1 (21) 

These results are illustrated in Fig. 3; note that tc(d/a ) - l imp ~ oo t*(p, d/a), 
precisely is the Bose-Einstein condensation critical (reduced) temperature 
(the phase transition only exists for p ~ oo), and it is given by 

y d/o~ -- 1 ] -- ~/d 

Hence 

tc = El(d/a) F(d/a + 1)3 ~/a (22') 

~d/a - 1 if d/a - 1 ~ +0 (22") 
[ ea/d if d/a --* oo 
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Fig. 3. Reduced temperature at which # vanishes as a function of d/~ and p. The p --. ~ limit 
yields the dj~ dependence of the (reduced) critical temperature corresponding to the Bose- 
Einstein condensation. 



106 de Sousa Vieira and Tsallis 

A few more steps will lead us to the thermal dependence of the (reduced) 
population No/N of the ground state below the critical temperature (above 
the critical temperature, No/N vanishes in the thermodynamic limit 
N ~ oo). We have that 

N o _ l  N , = I _  & p ( e ) f ( e ; # = O )  

Hence 

fo ~ yd/~ - 1 d tj/~ 
=1---~  d Y e , . _ l  

No~N= 1-( t / t , . )  J/~, t~ t , .  (23) 

where we have used Eq. (22). 
We now dedicate the rest of this subsection to determining the low- 

and high-temperature expansions of the chemical potential. 
For the low-temperature asymptotic behavior we can use, in Eq. (17), 

the expansion (A.15) of the Appendix (with A = 1, ~ = d/~ - 1, and z =/2/t), 
obtaining 

/2= p~/d 1 +  ~(2m) 1 1 )  2 ...... 
m=l ( p +  1 

• 2Ira--t' ( d l - ~  -- 1 - - j )  }(~_)2,,,}:/J) 1 (24) 

/ =  0 

The solution of this equation clearly has the form 

/ 2 = 0  1 + :r (2s)  
r = l  

The substitution of this expression into both sides of Eq. (24) provides, by 
simple identification, the knowledge of {C~r} up to any desired order. To the 
lowest correction we obtain 

/ 2 ~  1 - 1 t 2 , t-+O, Vd/~ (26) 

Note the change of curvature that occurs at d/7 = 1. As a matter of fact, for 
d/~ = 1, the departure of/2 from lip is slower than any power of t (and not 
only t2). For this case we obtain from Eq. (18), 

~(1/p)(1 - te  1/pt), t ~ O, d/a = 1, p < ~ (27) 

/ 2 ~ ( - - t e  t-+O, d/c~=l, p-+oo (27') 
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For the high-temperature asymptotic behavior we obtain from 
Eq. (17) 

f i ~  - - t l n t - t l n F  +1 
c~ 2d/~F(d/c~ + 1 ) 

t pd /~  + 1 

+ ' P  * l_ ta/ ) j  t - + m ,  Vd/a (28) 

Note that, as expected, the high-temperature leading terms do not depend 
on p (Maxwell-Boltzmann limit). 

3.2. Internal  Energy, Specif ic  Heat,  Equation of State,  and 
Latent Heat 

The internal energy is given by 

Hence 

with 

u( t ) = -c~d tj/~ + 1 fO :~ 

U = fo~ d~ ep(e) f(g) (29) 

U/N=/~o(1 )u (30) 

1 p + l  ] 
dy yd/~ e x p ( y ~ f i / t )  - 1 exp[ (p+  1 ) ( y - - f i / t ) ] - -  1 

(31) 
where we have used Eqs. (5), (9), and (11). This expression, together with 
flU) determined in Section 3.1, completely determines the thermal depen- 
dence of u and consequently U/N. The specific heat C is given by 

C = d U / d T  (32) 

Therefore the specific heat c per particle is given by 

c =- C / N k .  = d ( U / N ) / k  B d T =  du/dt (33) 

where we have used Eq. (30). The results are presented in Fig. 4. 
Let us now discuss the low-temperature behavior of c. For finite p we 

can expand the integral of Eq. (31) as indicated in the Appendix, and then 
use Eqs. (26) and (27); we obtain 

2~ 2 d pd/~ 
c ~  - -  t, t ~ 0  (34) 

3 a p + l  
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Fig. 4. (a-e) Thermal dependence of the (reduced) specific heat for typical values of p and 
d/c~. (f) For the p ~ oo limit, the d/~ dependence of the height of the cusp that appears in 
versus t for d/~ > 1. 
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This is an interesting result, since it shows that asymptotically C oc T for 
all finite values of  p and d/c~, thus generalizing the well-known result for 
quasi-free electrons in a metal (d = 3, e = 2, and p = 1 ). 

In the p--* oo limit, Eq. (31) becomes 

dYeY_  l, t < t c (35) 

where we have used tha t / i  = 0 if t < tc. By using a result of Ref. 1 ! (p. 325), 
we can rewrite this equation as follows: 

O~ \~  -~+ 1 t a / ~ + l  (36) 

Hence 

For the case d/c~ > 1, this expression can be rewritten as follows: 

(37') 

where we have used Eq. (22'). The C oc T J/~ law we have obtained 
generalizes the Debye law for acoustic phonons (d = 3, ~ = 1 ) as well as the 
T 3/2 law for magnons in the standard Heisenberg ferromagnet ( d = 3 ,  
~=2) .  

Let us now focus on the high-temperature behavior of c. The integral 
of Eq. (31) can be treated in the same way as for Eq. (17); we obtain 

c ~  1-t 2j/~+iF(d/c~+ l)tJ/~ 

p ( p d / ~ -  1) } 
- - ( p +  l)d7U[~-(~--qS~)]p tpd/~_, t ~ o o  (38) 

Note that in the Fermi-Dirac (Bose-Einstein) statistics, the specific heat 
approaches the classical d/a value from below (above) when d/~ > 1, and 
the opposite happens when d/a < 1; for d/a = 1, the approach occurs from 
below for all values of p. Consequently, C versus T presents, for d/a > 1, a 
maximum for p high enough (the maximum becomes a cusp in the p ~ oo 
limit); for d/~ < 1, it presents a maximum for p low enough. 
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Let us now deduce the equation of state. The grand canonical 
partition function Gk associated with the wave vector k is given by 

Zk = 1 + exp[ --fi(8k -- #)-1 + ""  + exp[--pfl(8k --/~)] 

1 -- e x p [ - - ( p  + 1) fl(8k-- #)]  

1 -- exp[ --fl(ek --/~)] 
(39) 

The total partition function ~ equals ~ k  Zk; consequently, 

S In ,7 = de p(e) In 
1 - - e  - ( p + l ) f l ( ~  /~) 

1 - e -fl(~" u)  
(40) 

We know from thermodynamics that the pressure P satisfies 

Hence 
tiP V = in 

f lPV= f /  de p(a) in 
1 - - e  - ( p + l ) f l O : - ' ~ )  

1 - -  e -f l(~ l~) 

e~/~ dy ya/~ l ln 
I - - e  ( p + l ) ( > - / h o  

1 - e - ( -" ' " )  
(41) 

where we have used Eq. (5). 
dynamics, we have that 

On the other hand, also from 

Oln"7 
U 

(~fi fixed flu 

_ o ( p , v )  

(~J~ fixed tip 

dfi d/~ 1 ~., 
- -  ~ e "''~' J0  dy yJ/~ I In 

| - - e  ( p + l ) ( y - f l / L )  

1 - - e  ( Y - f l " )  

t h e r m o -  

And by using again Eq. (41), we obtain 

P = (a/d) U/V (42) 

which is exact for all values of  p. Equation (42) transforms the analysis of 
the pressure into that of U, which we have already done. 

Let us finally calculate the latent heat L (per particle) associated with 
the Bose-Einstein condensation (first-order) phase transition. The 
Clapeyron equation states that 

L = T(dP/dT) r,(v, - v~ ) (43) 
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where vn (v,) is the volume per  particle in the normal (condensed) phase. 
But in the N>> 1 limit, v C, vanishes (12) and  v, equals V/N; therefore 

T(dP~ V T~_[d(U/N)~ ~ /du \  
L= \~ - -~ jT , .~=  d[_ dr  JT,.=k"r~t~-~),,  

where we have used Eq. (42) and  the definitions of u and t. By replacing 
Eq. (36) in this expression we obta in  

and, by using Eq. (22'), we finally obta in  

L ~(d/~+l)(d ) 
k . T -  ~(d/~) -~+ 1 

- ~-(d/a - 1) if d/cz - 1 --+ + 0  

d/a + 1 if d/a --, 

(44) 

(44') 

The dependence  of L on d/~ is represented in Fig. 5. 

Fig. 5. 
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The d/c~ dependence of the latent heat L per particle (in units of k B T) associated with 
the Bose Einstein condensation (first-order phase transition). 
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4. UNFIXED TOTAL N U M B E R  OF PARTICLES 
(QUASI  PARTICLES ) 

In the present situation N is unfixed, and therefore/~ vanishes for all 
temperatures and for all values of p. The average number ( N )  of particles 
is given by 

( N ) =  de p(e) e~- 1 e(p + l)/~ _ 1 

Hence 

V - V 2  eo/  dyyJ/~-I p + l  - -  - -  e-" 1 e (p+ I ) y -  1 

where we have used Eq. (5). It follows that for d/c~>l 

(N) ~(d/~)F(d/~+l) I1 1 ]  
V - - 2 d x d / 2 F ( d / 2 + l ) ( l ~ ' / _ l  a/) 1/2 (p+l )J /~  l ( ~BT)d/= (46) 

where we have used Eq. (4'). 
Let us now focus on the internal energy. It is given by 

f: E' ,47, U~- deep(e) e/~,: 1 e~p+ll~,:_ 1 

Hence 

U 1 (kBT)J/~+lfo [ ] _  V -  V e'~/~ dy yJ/~ 1 p + 1 
e y l e(p+ l ) . v  1 

Therefore, for d/c~ > 1, we obtain 

= 2~TrJ/ZF(d/2 + 1 )(I!J= , a/) 1/2 1 (p + 1 )d/~-, (k~ 1 

where we have used again Eq.(4'). The present U/VocT J/~+~ law 
generalizes the well-known blackbody T 4 Stefan-Boltzmann law (d= 3, 
~ = 1 ,  p--,oe). The generalized radiation pressure can be obtained by 
replacing Eq. (48) into Eq. (42), which still holds. 

5. CONCLUSION 

In a unified framework, we have treated the parastatistics of an ideal 
confined (fixed-volume) d-dimensional gas of N particles (or quasiparticles) 
whose energy spectrum is given by Eq. (1) [-which contains the important 
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isotropic case e oc ]kl ~ ( a>O) ] ;  each state can be occupied at most by p 
particles. We have studied, for arbitrary d, a, p, and T, and for both fixed 
and unfixed N cases, various thermodynamic quantities (chemical poten- 
tial, average populations, internal energy, specific heat, pressure, and latent 
heat). In what follows we summarize the main results. 

(i) The density of states satisfies p(~) oc ~a/~ 1. This form will imply 
that the thrmal dependence of all equilibrium thermodynamic quantities, 
and for all p, will depend on d and e on through the ratio d/a. In fact, most 
of the results summarized below remain unchanged (except for the pre- 
factors) if p oc e d/~ ~ (i.e., if e oc lkl ~) in the e--+ 0 limit only, and not 
necessarily for all values of e. 

(ii) The Bose Einstein condensation appears, for d/a > 1, as a non- 
uniform convergence in the p-+  oo limit, in complete analogy with phase 
transitions in interacting systems, which appear as nonuniform convergen- 
ces in the thermodynamic limit N--+ oc. We obtain the explicit dependence 
of the critical temperature T,. on d/a [Eq. (22')]: it is T,. oc ( d / e -  1) for 
d/e > 1, and T,. oc e/d for die >> 1. The macroscopic population of the 
ground state satisfies N o / N = I - ( T / T , . )  d/= for T<<.T,. and d / e > l .  The 
latent heat L is obtained as an explicit function of die [Eq. (44)]; it 
satisfies L/Toc  d / a - 1  for d/a> l, and L / T ~ d / a +  I for d/a>> 1. The 
picture that emerges [here and in paragraphs (iv) and (v) which follow] is 
that the p-+ oe limit is deeply different from any other case (i.e., 
0 < p < oo). Moreover, all finite p paragases are qualitatively similar, and 
are well characterized by the Fermi-Dirac case (p---1). Within this con- 
text, the view developed in Ref. 2, where the d =  3, a = 2  Bose Einstein 
condensation is referred for all values of p, can be considered as deeply 
misleading. 

(iii) For  fixed N, finite p, and low temperature, the chemical poten- 
tial presents a quadratic departure from the T = 0  value [Eq. (26)]; the 
curvature changes its sign at d/7 = 1. In the high-temperature regime the 
first two (or three for p > 1 ) dominant terms (of the chemical potential) do 
not depend on p. 

(iv) For fixed N, finite p, arbitrary d/a, and low temperature, the 
specific heat satisfies C oc T, thus generalizing the standard result for quasi- 
free electrons in a conductor ( d=  3, e = 2, p = 1). In the p--+ oo limit we 
obtain, for both fixed and unfixed N cases, C oc T a/~ thus generalizing the 
Debye law for acoustic phonons in a crystal (d = 3, a = 1) and the T 3/2 law 
for magnons in a Heisenberg ferromagnet ( d=  3, e = 2). 

(v) For fixed N, arbitrary p and d/e, and high temperature, C 
approaches the classical value (d/a)NkB. For p low (high) enough, C 
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approaches this values from below (above) when die > 1, and the opposite 
happens when die < 1; consequently, C presents, for die > 1, a maximum 
for p high enough (cusp in the p--* oe limit) and presents, for die < 1, a 
maximum for p low enough. 

(vi) For arbitrary p, d/a, and T and for both fixed and unfixed N 
cases, the pressure P and the internal energy U are related through 
U=(d/e)PV (V-vo lume) ,  thus generalizing the standard result U =  
(3/2)PVfor d = 3 ,  e = 2 ,  and p = l ,  oe. 

(vii) For unfixed N, arbitrary p, die and T, the density of the 
internal energy (proportional to the power irradiated per unit area of the 
confining box) satisfies U/V oc T a/~+l [Eq. (48)], thus generalizing the T 4 
Stefan-Boltzmann law (d = 3, e = 1, p ~ oc). 

Also, since the 1968 paper by Gunton and Buckingham (9) (see also 
Ref. 13 and references therein), the Bose-Einstein condensation has been 
known to be related to the criticality of the spherical model (n-vector 
model with n--* or). Consistently, the fact that T, should vanish in the 
die--* 1 limit can be inferred from this relationship. 

Finally, as a closing remark, let us recall that several studies ~14 17) are 
available in which the bosonic limit (p ~ oo) is analyzed under a variety of 
conditions (for both spinless and magnetized bosons). By following along 
the lines of the present paper, it would be interesting to extend those results 
to arbitrary values of p. 

APPENDIX.  GENERALIZED S O M M E R F E L D  INTEGRAL 

Here we generalize to an arbitrary finite p the standard Sommerfeld 
integral for the FD statistics and its low-temperature expansion. We 
consider the integral 

I ( z ) -  d y H ( y ) f ( y ; z )  (A.1) 
o o  

where 
1 p + l  

p > 0  (A.2) J~Y;Z~=-e . . . .  - 1  e(P+l (~'---)- 1' 

To characterize the function H(y), we introduce 

fY  oo K(y) = - dy' g (y ' )  

K(y) is assumed to satisfy the following requirements: 

(i) l im K ( y )  = 0 
y ~  - - ~  

(A.3) 

(A.4) 
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Hence 

H(y) = dK( y)/dy (A.5) 

(ii) lim f ( y ; z )  K(y)=O (A.6) 
. v ~  oo 

(iii) K(y) is analytic at y = z  (A.7) 

The conditions are almost always satisfied in the physical situations, since 
typical functions H(y) identically vanish for y < 0, asymptotically behave 
as a power law in the y--,  oo limit, and are soft functions at y = z  [ H ( y )  
might present singularities, but they are normally integrable and located at 
places such as y = 0, and not at y = z]. 

Integrating (A.1) by parts, we obtain 

I(z) = K(y ) f ( y ;  z)l ~ - f~oo dy K ( y ) - -  
df(y; z) 

dy 

= - ~ [~ dy K(y) df(y; ziii) (A.8) 
- o~ dy o 

where we have used conditions (A.4) and (A.6) and the fact that 
lim~.~ _~ f ly;  z)= p. By expanding K(y) at y=z ,  we obtain 

= p K ( z ) _ 5 1  1 Fd2mK(y).] i ~ z) 2mdf (A.9) 
= K~m)'.k dy 2m j y = j _ d y ( y -  -~y 

where we have used the fact that 

and that df/dy is an even function of (y  - z), and therefore all odd terms in 
the sum over n vanish. By using the connection between K(y) and H(y), 
we can rewrite Eq. (A.9) as follows: 

(L ~ j , :  am 
m = l  2 
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with 

f~ 2 m d [  p+I  1 1 1 dxx dx e(YT1)~-I eX-1 a,, -= (2m)! oo 

1[ 
- ( 2 m ! )  1 , 1; ( p + l - ) 2 m  1 ~ d x x 2 m  

d 1 
dx l - e x 

,[ 1 ]2 m r 
- (2m)! 1 (p + 2m 1 --o0 dx sinh 2 x 

t I 1) l(2rc)2mlB2m [ (A.11) - ( 2 m ) !  1 ( p +  2m 1 

where in the last step we have used Ref. 11, p. 352; the B2m a r e  the 
Bernoulli numbers. By using the fact that [Bzm [ = (2m)! ~(2m)/(22" lrc2m) 
we can finally express a m as follows: 

a m = 2((2m) E1 

and consequently 

f~_ dyH(y) f (y;z)  

m = l  

=-p ~ H(y tdy+ T 1-)--~S H'(zt 

~z 4 E1 1 +-~ (p + l )3] H'"(z) + "'" 

, ] 
(p + 1 )2m-1 (A.12) 

1 l i d  2m 1H(y)~ ] 
( p + l )  ~ 'AL ~ L=J 

(A.13) 

which is the generalization we were looking for. 
Quite frequently H(y) is defined as follows: 

0 if y < O  
H ( y ) =  AY ~ if y~>O 

(A.14) 

In such a case, Eq. (A.13) can be rewritten as follows: 

fo dY H(y) f(y; z) 

1 z2~  (p+ 1)2,.-, I1 
m= j=O 

(7-J)} 
(A.15) 
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Finally, if we identify y=e/kBT and z=l(kBT, Eq. (A.13) takes the 
form 

f ~  de H(e)  f ( e )  -oc 

f" 
= p H(e)  de 

oo 

{ E , ] + 2  ~ ~(2m) l (p~_l )2m 1 [[ t2mH(2m l , (f l)]  
in= 1 

=p H(.)d.+ T 

~4 I |  1 "q-~ (p __[__ 1 )3 ] [ . 4 H t t t ( ] 2 ) ] ( ~ ) 4 ~ - o [ ( ~ )  6 ] (A.16) 

where in the estimation of the rest, o[(ke T/kt)6], we have assumed the 
quite frequent fact that HU't(#) is of the order of H(Iz)/#". 
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